AWS Deep Learning AMI는 이제 Amazon EC2 인스턴스 딥 러닝을 가속화하기 위해 최적화된 TensorFlow 1.9 및 Keras 2용 Apache MXNet 1.2를 지원합니다.

Ubuntu 및 Amazon Linux용 AWS Deep Learning AMI에는 이제 소스에서 직접 사용자 정의로 제작된 최적화된 TensorFlow 1.9의 빌드와 Amazon EC2 인스턴스 전반에 걸쳐 미세하게 조정된 고성능 훈련이 제공됩니다. 또한 AMI에는 최신 성능의 성능 및 사용 편의성이 향상된 Apache MXNet 1.2와 고성능 멀티-GPU 훈련을 지원하는 새로운 Keras 2-MXNet 백엔드 및 MXNet 모델 훈련을 위한 향상된 디버깅…

Amazon SageMaker에 배치 변환 기능 및 Tensor Flow 컨테이너에 대한 파이프 입력 모드 추가

  (다운로드는 AWS 원문을 참고하세요)   뉴욕 Summit에서 저희는 두 가지 새로운 Amazon SageMaker기능을 출시했습니다. 즉, 고객이 수 페타바이트의 데이터 및 TensorFlow 컨테이너에 대한 파이프 입력 모드 지원에 대해 실제 시간이 아닌 시나리오에서 예측할 수 있도록 하는 배치 변환이라는 새로운 배치 추론 기능입니다. SageMaker는 저희는 이 블로그와 기계 학습 블로그에서 광범위하게 다루고 있습니다. 사실, SageMaker…

AWS Cloud 에서 GPU를 사용하여 확장가능한 멀티노드 딥 러닝 훈련하기

산업적 크기의 데이터셋에 대한 심층 신경 네트워크의 광범위한 도입에 대한 주요 도전과제는 이를 훈련시키는 데 필요한 시간과 자원입니다. 2012 년 ImageNet 대규모 시각 인식 공모전 (ILSVRC)에서 우승하였고 심층 신경 네트워크의 최신 호황을 누려온 AlexNet은 120만 개의 이미지와 1000개 범주의 데이터셋을 훈련시키기 위해 거의 일주일이 걸렸습니다. 기계 학습 모델을 개발하고 최적화하는 것은 반복적인 과정입니다. 여기에는 새로운…

JavaScript용 AWS SDK에서 Amazon S3 Select 지원 소개하기

JavaScript용 AWS SDK에서 이벤트 스트림을 포함한 Amazon S3(Amazon Simple Storage Service) selectObjectContent API에 대한 지원을 발표하게 되어 기쁩니다. Amazon S3 Select를 사용하면 단순 SQL식을 사용하여 S3 개체에서 데이터의 하위 집합을 쿼리 할 수 있습니다. Amazon S3는 한번에 전체 API 응답을 반환하는 대신 이벤트 시리즈로 응답을 스트리밍합니다. 이를 통해 응용 프로그램은 응답을 수신할 때 응답의 일부를…

AWS Systems Manager의 리소스 데이터 동기화를 위한 AWS CloudFormation 리소스

AWS Systems Manager의 리소스 데이터 동기화 기능을 사용하여 관리되는 인스턴스의 인벤토리 데이터를 Amazon S3 버킷에 동기화할 수 있습니다. 그러면 리소스 데이터 동기화는 새 인벤토리 데이터가 수집될 때마다 S3 버킷을 자동으로 업데이트합니다. 리소스 데이터 동기화를 사용하여 여러 AWS 계정의 인벤토리 데이터를 하나의 Amazon S3 버킷에 동기화할 수도 있으며, S3 버킷을 여러 AWS 계정의 인벤토리 데이터 레이크로…

Amazon Comprehend가 이제 Syntax Analysis를 지원합니다.

Amazon Comprehend가 Syntax API를 제공함을 알려드리게 되었습니다. 이를 통해 텍스트(ex) 단어 경계 추출용) 및 각 단어의 해당 part of speech (PoS)을 토큰화하여 사용할 수 있습니다. Amazon Comprehend는 고객 의견이 부정적인지 긍정적인지를 파악하고 “Amazon”과 같은 고유 명사를 “조직”으로 식별하는 것과 같은 분석 유스 케이스를 가능하게 합니다. 새로운 Syntax API를 통해 고객은 가장 상세한 수준의 텍스트와 단어…

데이터베이스 마이그레이션 서비스를 사용하여 관계형 데이터베이스에서 Amazon Kinesis로 CDC데이터 로드하기

많은 대기업들이 시기 적절한 통찰력을 얻기 위해 데이터 처리를 배치에서 실시간으로 이동하고 있습니다. 그렇게 하는 것의 문제점은 실시간 데이터 처리 아키텍처가 들어오는 데이터 스트림을 따라잡을 수 있어야 한다는 것입니다. 이를 위해서는 강력한 내결함성과 탄력성이 필요합니다. 이 글에서는 실시간 데이터 처리 아키텍처와 SQL 서버 데이터베이스용 Amazon RDS에서의 변경 사항을 캡쳐하여 Amazon Kinesis 데이터 스트림으로 보내는 방법에…

Amazon SageMaker BlazingText를 사용하여 텍스트 분류 및 단어벡터 기능 향상시키기

Amazon SageMaker BlazingText 알고리즘에 대한 몇 가지 새로운 기능이 추가되었습니다. 감정 분석, 명명 개체 인식 및 기계 번역과 같은 많은 다운스트림 NLP (자연어 처리) 작업은 텍스트 데이터를 실제로 가치있는 벡터로 변환해야 합니다. 고객은 수백 기가 바이트의 텍스트 문서에서 이러한 벡터를 학습하기 위해 Word2Vec 알고리즘의 BlazingText의 고도로 최적화된 구현을 사용하고 있습니다. 결과로 나오는 벡터는 단어를 읽을…

이제 Amazon SageMaker에서 개체 탐지 알고리즘을 사용할 수 있습니다.

Amazon SageMaker는 기계 학습 모델을 쉽게 구축, 훈련 및 배치할 수 있도록 완전히 관리되고 확장성이 뛰어난 ML(기계 학습) 플랫폼입니다. 이것은 ML의 민주화를 향한 커다란 발걸음으로 개발자들을 위한 ML 공간의 진입 장벽을 낮추는 것입니다. 컴퓨터 비전은 이미지를 다루는 기계 학습의 한 분야입니다. 이미지를 사전 정의된 카테고리 집합으로 분류하는 방법을 배우는 Amazon SageMaker 이미지 분류 알고리즘은 SageMaker에서…

Amazon SageMaker DeepAR은 이제 결측치, 범주형 및 시계열 특징, 일반화된 주파수를 지원합니다.

Amazon SageMaker에서 DeepAR의 몇가지 새로운 기능을 출시할 것입니다. DeepAR는 확률적 예측을 하기 위해 재귀 신경망(RNN)을 사용하여 시계열 예측 또는 예측을 위한 감독된 기계 학습 알고리즘입니다. 이 알고리즘은 출시된 이후 다양한 유스 케이스에 사용되어 왔습니다. 개발자들에게 결측치 지원, 사용자가 제공한 시계열 특징, 다중 범주형 특징 및 일반화된 주파수와 같은 새로운 기능에 대한 액세스 권한을 부여하게 되어…